Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Molecules ; 27(19)2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2066283

ABSTRACT

Honey inhibits bacterial growth due to the high sugar concentration, hydrogen peroxide generation, and proteinaceous compounds present in it. In this study, the antibacterial activity of stingless and sting honey against foodborne pathogenic bacteria isolated from spoiled milk samples was examined. The isolated bacterial strains were confirmed as Bacillus cereus and Listeriamonocytogenes through morphological, biochemical, and 16 s RNA analysis. Physiochemical characterizations of the honey samples revealed that both of the honey samples had an acidic pH, low water content, moderate reducing sugar content, and higher proline content. Through the disc diffusion method, the antibacterial activities of the samples were assayed and better results were observed for the 50 mg/disc honey. Both stingless and sting honey showed the most positive efficacy against Bacillus cereus. Therefore, an in silico study was conducted against this bacterium with some common compounds of honey. From several retrieved constituents of stingless and sting honey, 2,4-dihydroxy-2,5-dimethyl 3(2H)-furan-3-one (furan) and 4H-pyran-4-one,2,3-dihydro of both samples and beta.-D-glucopyranose from the stingless revealed high ligand-protein binding efficiencies for the target protein (6d5z, hemolysin II). The root-mean-square deviation, solvent-accessible surface area, the radius of gyration, root-mean-square fluctuations, and hydrogen bonds were used to ensure the binding stability of the docked complexes in the atomistic simulation and confirmed their stability. The combined effort of wet and dry lab-based work support, to some extent, that the antimicrobial properties of honey have great potential for application in medicine as well as in the food industries.


Subject(s)
Anti-Infective Agents , Honey , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/analysis , Bacillus cereus , Furans , Hemolysin Proteins , Honey/analysis , Hydrogen Peroxide/pharmacology , Ligands , Microbial Sensitivity Tests , Proline , Pyrans , RNA , Solvents/analysis , Sugars , Water
2.
Microbiol Spectr ; 10(3): e0231121, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1846341

ABSTRACT

The modulators of severe COVID-19 have emerged as the most intriguing features of SARS-CoV-2 pathogenesis. This is especially true as we are encountering variants of concern (VOC) with increased transmissibility and vaccination breakthroughs. Microbial co-infections are being investigated as one of the crucial factors for exacerbation of disease severity and complications of COVID-19. A key question remains whether early transcriptionally active microbial signature/s in COVID-19 patients can provide a window for future disease severity susceptibility and outcome? Using complementary metagenomics sequencing approaches, respiratory virus oligo panel (RVOP) and Holo-seq, our study highlights the possible functional role of nasopharyngeal early resident transcriptionally active microbes in modulating disease severity, within recovered patients with sub-phenotypes (mild, moderate, severe) and mortality. The integrative analysis combines patients' clinical parameters, SARS-CoV-2 phylogenetic analysis, microbial differential composition, and their functional role. The clinical sub-phenotypes analysis led to the identification of transcriptionally active bacterial species associated with disease severity. We found significant transcript abundance of Achromobacter xylosoxidans and Bacillus cereus in the mortality, Leptotrichia buccalis in the severe, Veillonella parvula in the moderate, and Actinomyces meyeri and Halomonas sp. in the mild COVID-19 patients. Additionally, the metabolic pathways, distinguishing the microbial functional signatures between the clinical sub-phenotypes, were also identified. We report a plausible mechanism wherein the increased transcriptionally active bacterial isolates might contribute to enhanced inflammatory response and co-infections that could modulate the disease severity in these groups. Current study provides an opportunity for potentially using these bacterial species for screening and identifying COVID-19 patient sub-groups with severe disease outcome and priority medical care. IMPORTANCE COVID-19 is invariably a disease of diverse clinical manifestation, with multiple facets involved in modulating the progression and outcome. In this regard, we investigated the role of transcriptionally active microbial co-infections as possible modulators of disease pathology in hospital admitted SARS-CoV-2 infected patients. Specifically, can there be early nasopharyngeal microbial signatures indicative of prospective disease severity? Based on disease severity symptoms, the patients were segregated into clinical sub-phenotypes: mild, moderate, severe (recovered), and mortality. We identified significant presence of transcriptionally active isolates, Achromobacter xylosoxidans and Bacillus cereus in the mortality patients. Importantly, the bacterial species might contribute toward enhancing the inflammatory responses as well as reported to be resistant to common antibiotic therapy, which together hold potential to alter the disease severity and outcome.


Subject(s)
Achromobacter denitrificans , COVID-19 , Coinfection , Microbiota , Achromobacter denitrificans/genetics , Bacillus cereus , Humans , Microbiota/genetics , Phylogeny , Prospective Studies , SARS-CoV-2/genetics , Severity of Illness Index
3.
Int J Environ Res Public Health ; 19(5)2022 02 24.
Article in English | MEDLINE | ID: covidwho-1736897

ABSTRACT

The impact of globalization on beekeeping brings new economic, scientific, ecological and social dimensions to this field The present study aimed to evaluate the chemical compositions of eight propolis extracts from Romania, and their antioxidant action and antimicrobial activity against seven species of bacteria, including pathogenic ones: Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Listeria monocytogenes and Salmonella enterica serovar Typhimurium. The phenolic compounds, flavonoids and antioxidant activity of propolis extracts were quantified; the presence of flavones and aromatic acids was determined. Quercetin and rutin were identified by HPLC analysis and characterized using molecular descriptors. All propolis samples exhibited antibacterial effects, especially against P. aeruginosa and L. monocytogenes. A two-way analysis of variance was used to evaluate correlations among the diameters of the inhibition zones, the bacteria used and propolis extracts used. Statistical analysis demonstrated that the diameter of the inhibition zone was influenced by the strain type, but no association between the propolis origin and the microbial activity was found.


Subject(s)
Propolis , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bacillus cereus , Escherichia coli , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Propolis/pharmacology , Pseudomonas aeruginosa , Romania
4.
BMJ Case Rep ; 14(1)2021 Jan 18.
Article in English | MEDLINE | ID: covidwho-1066836

ABSTRACT

This case represents a rare fulminant course of fried-rice associated food poisoning in an immunocompetent person due to pre-formed exotoxin produced by Bacillus cereus, with severe manifestations of sepsis, including multi-organ (hepatic, renal, cardiac, respiratory and neurological) failure, shock, metabolic acidosis, rhabdomyolysis and coagulopathy. Despite maximal supportive measures (continuous renal replacement therapy, plasmapheresis, N-acetylcysteine infusion and blood products, and broad-spectrum antimicrobials) and input from a multidisciplinary team (consisting of infectious diseases, intensive care, gastroenterology, surgery, toxicology, immunology and haematology), mortality resulted. This case is the first to use whole genome sequencing techniques to confirm the toxigenic potential of B. cereus It has important implications for food preparation and storage, particularly given its occurrence in home isolation during the COVID-19 pandemic.


Subject(s)
Bacillus cereus/genetics , Exotoxins/genetics , Foodborne Diseases/diagnosis , Acetylcysteine/therapeutic use , Acidosis/physiopathology , Acidosis/therapy , Adult , Anti-Arrhythmia Agents/therapeutic use , Anti-Bacterial Agents/therapeutic use , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/therapy , Bacillus cereus/isolation & purification , Blood Coagulation Disorders/physiopathology , Blood Coagulation Disorders/therapy , Blood Transfusion , Brain Diseases , Continuous Renal Replacement Therapy , Fatal Outcome , Female , Foodborne Diseases/microbiology , Foodborne Diseases/physiopathology , Foodborne Diseases/therapy , Free Radical Scavengers/therapeutic use , Humans , Immunocompetence , Liver Failure/physiopathology , Liver Failure/therapy , Multiple Organ Failure/physiopathology , Multiple Organ Failure/therapy , Plasmapheresis , Renal Insufficiency/physiopathology , Renal Insufficiency/therapy , Rhabdomyolysis/physiopathology , Rhabdomyolysis/therapy , Sepsis/physiopathology , Sepsis/therapy , Shock/physiopathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL